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Abstract. The dynamics of a system composed of two nonlinearly coupled, drastically different nonlinear
and eventually oscillatory elements is studied. The rich variety of attractors of the system is studied with
the help of phase space analysis and Poincare maps.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems

1 Introduction

Systems composed of two or several coupled oscillatory
components or elements are useful when modeling nonlin-
ear processes in many areas of science [1–9]. One of the
oscillators may exhibit quasiharmonic oscillations yet non-
linear with definite amplitude and frequency, relaxation-
like oscillations with definite period or time-chaotic
oscillations. Other components may simply be excitable
nonlinear elements in the ensemble. The collective dy-
namics of such an assembly is determined by both the
dynamics of the components and the type of coupling be-
tween them. Such composite systems may be useful mod-
els or building blocks for chemical and biochemical pro-
cesses [1–4], in physiology [5–9] or in electronics [10,11].
Thus in the perspective of such possible wide applica-
bility it seems worth to explore the dynamical behavior
and attractors, and hence the physical properties of a sys-
tem composed of two drastically different nonlinear ele-
ments coupled by also nonlinear functions. For illustration
we consider a Van der Pol oscillator exhibiting (nonlin-
ear) quasiharmonic oscillations and a FitzHugh-Nagumo
system displaying relaxation-like behavior. We show that
such system with the two parts responsible for really dif-
ferent functions allows a rich variety of oscillatory and
complex chaotic modes.

Note that although a harmonic oscillator is capable
of accounting for quasiharmonic oscillations yet it is of
no use to our purpose as we would like to have an oscil-
lator whose amplitude and frequency do not depend on
initial conditions (i.e. a limit cycle). On the other hand,
the choice of a FitzHugh-Nagumo excitable element and
a Van der Pol oscillator and not two coupled Van der Pol
oscillators, say, one quasiharmonic and the other in the
relaxational regime is dictated by our interest of clearly
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separating a relaxational, non-oscillatory evolution from
the time oscillatory (limit cycle) regime.

In Section 2 we define the model-problem to be stud-
ied. Section 3 is devoted to the analysis of various os-
cillatory and relaxational regimes of the chosen compos-
ite system. In Section 4 we deal with chaotic oscillations.
Finally, in Section 5 we provide some conclusions.

2 Model

Let us construct two building blocks possessing the
following two characteristics, taken separately
(i) one exhibits quasiharmonic oscillations;
(ii) the other incorporates an excitation threshold above

which short powerful, hence relaxation-like pulses are
emitted.

An oscillator found in many realms of science satisfying
condition (i) is the Van der Pol oscillator (VdP) defined
by the equations

dx
dt

= y

dy
dt

= µ(γ − x2)y − ω2x,

(1)

where µ � 1 is a small parameter and ω gives the oscil-
lation frequency. When γ = 0 the system (1) displays a
supercritical Andronov-Hopf bifurcation [12] and for γ > 0
a limit cycle appears in its phase plane.

A system capable of relaxation-like pulse generation
as demanded with condition (ii) is the FitzHugh-Nagumo
model (FHN)in the form [13]

du
dt

= f(u)− v
dv
dt

= ε(u− b),
(2)
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where f(u) is the nonlinear function of cubic or sigmoidal
shape, ε is a smallness parameter, 0 < ε � 1, and b is
a parameter driving the excitation threshold. When ex-
ceeding the excitation threshold (for example, by apply-
ing an external perturbation that could be provided by
the Van der Pol element (1)) there arises the relaxation-
like pulse. Then the system returns back to the original
rest state given by the single stable fixed point. Note, that
in equations (2) the fast variable u is like a chemical acti-
vator, and v is responsible for “recovering” the rest state
as an inhibitor [3,4].

A composite dynamical system possessing together the
two features, (i) and (ii), just described can be obtained
by coupling (1) to (2). We set



ε1
du
dt

= f(u)− v − y,
dv
dt

= ε2(u+ I),

dx
dt

= y,

dy
dt

= (Γ (u, I)− lx2)y −Ω(u, I)x,

(3)

where the variables of the FHN component, (u, v), de-
scribe the pulse generation and the VdP variables, (x, y),
describe the rhythm of the limit cycle oscillations. Note,
that if we wish the composite system to be endowed with
more than one excitability threshold it suffices to add
another FHN excitable element or some other equiva-
lent component. The parameter I plays the role of ex-
ternal stimulus; l characterizes the robustness of the os-
cillations (l = 0 corresponds to a harmonic oscillator) and
0 < ε1 � 1. The functions Γ (u, I) and Ω(u, I) change the
amplitude and frequency of the oscillations depending on
the values taken by u and on the values of the external
stimulus, I. Their concrete forms will be discussed later in
accordance to the specific dynamical behavior we would
like to have. The second smallness parameter, 0 < ε2 � 1,
allows to tune, separately or simultaneously, the charac-
teristic time scales of the relaxation-like pulse of equa-
tions (2) and the oscillations of equations (1).

3 Quasiharmonic and relaxational oscillations

Following [13], we take f(u) in the piece-wise linear form

f(u) =


−m1u, if u ≤ a,
m2u− a(m1 +m2) if a < u < 1,
−m3u− a(m1 +m2) +m3 +m2 if u ≥ 1.

with a, m1, m2, m3 > 0, (4)

and for the coupling functions Γ and Ω we start taking
rather simple forms. Then, system (3) reduces to

ε1
du
dt

= f(u)− v − y,
dv
dt

= ε2(u+ I),

dx
dt

= y,

dy
dt

= (γ(1 + αI + βu)− lx2)y − ω2
0x,

(5)

with γ, β > 0 and α < 0 fixed coefficients.

3.1 Phase space analysis

Let us denote by G the four-dimensional phase space of
system (5).

3.1.1 Fast motions of the system (5)

Let us consider the surface F = {f(u) − v − y = 0} in
the phase space G. This surface is an integral manifold of
system (5) in the case ε1 = 0. It represents a Z-shaped
surface. When ε1 → 0, the variable u changes rapidly,
u̇ → ∞, outside the surface F, while the other variables
change with a finite velocity. Therefore, when ε1 → 0, all
trajectories of system (5) belong to the planes

v, x, y = const. (6)

Along these planes the trajectories evolve with an arbi-
trary high rate of change in u (ε1 → 0). Hence, they cor-
respond to “fast” motions of the system [12,14] which are
approximately described by the equation

ε1u̇ = f(u)− v0 − y0, (7)

with v0, y0 = const. To simplify notation a dot accounts
for time derivative.

3.1.2 Slow motions of system (5)

It follows from (7) that all fast motions of system (5)
asymptotically tend to those parts of the surface F where
the inequality f ′(u) < 0 is satisfied. Taking into account
(4) we find that there exist two regions of the surface F
which attract all fast motions. We denote them by F+

0

and F+
1 , {

F+
0 = {f(u)− v − y = 0, u < a}

F+
1 = {f(u)− v − y = 0, u > 1}·

(8)

In the corresponding neighborhoods (order ε1) of the re-
gions F+

0 and F+
1 the trajectories of system (5) evolve with

velocities bounded on each variable. These are the “slow”
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motions [12,14]. With accuracy up to terms of higher or-
der the slow motions are described by the reduced system

v̇ = ε2(u+ I),

ẋ = y,

ẏ = (γ(1 + αI + βu)− lx2)y − ω2
0x,

f(u)− v − y = 0.

(9)

For simplicity, we take m1 = m3 = 1. In this case the slow
motions in the neighborhoods of F+

0 and F+
1 are governed

by the same system which can be written in the form
ẋ = y,

ẏ = Φ(x, y, z)y − ω2
0x,

ż = −ε2(z − y + I),

(10)

where

z ≡ u+ y, Φ(x, y, z) ≡ γ[1 + αI + βu]− lx2.

Thus, the trajectories of the system (5) have both fast and
slow features. Generally, this allows two basic attractors:

(i) Attractors entirely located within the neighborhoods
of the regions F+

0 and F+
1 . Such attractors have no

fast motions.
(ii) Attractors which have both fast and slow parts of

motions.

3.1.3 Jumps of the variable z

In the attractors of type (ii) the parts of slow motions
sequentially change with very rapid (instantaneous) jumps
of the variable u. It follows from (7) that these jumps occur
at the planes {u = a} and {u = 1}. Let us denote by G+

the phase space of system (10). Then, in G+ these planes
correspond to the planes

Za = {z − y = a}, and Z1 = {z − y = 1}, (11)

respectively. Note, that in the phase space G+ the re-
gion F+

0 lies below the plane Za, while F+
1 lies above the

plane Z1. The fast motions of system (5) make “connec-
tions” between the trajectories of both regions, F+

0 and
F+

1 . Since outside the small neighborhoods of F+
0 and

F+
1 the inequality (6) is fulfilled, the fast motions can be

approximately taken into account with instant jumps of
the variable z. Let x = x−, y = y−, z = z− be the co-
ordinates of a phase space point before the jump, and
x = x+, y = y+, z = z+ define the point after the jump.
Using (6) we find from (8) the following jump rules

x+ = x−, y+ = y−, z+ = z− + (1 +m2)(1− a)
if (x−, y−, z−) ∈ Za;

x+ = x−, y+ = y−, z+ = z− − (1 +m2)(1− a)
if (x−, y−, z−) ∈ Z1.

(12)

Let us now find the attractors of the system (5).

Fig. 1. A qualitative view of the phase space G of the system
(5). K0 is the slow motion surface. The planes Za, Z1 are switch-
planes. When trajectories hit the planes they jump with fast
motions.

3.2 Quasiharmonic oscillations

Consider the slow motions (10) when ε2 → 0. In this case
each plane {z = z0 = const} in the phase space G+ repre-
sents an integral manifold. Motions on the plane {z = z0}
are governed by the system{

ẋ = y,

ẏ = [γ(1 + αI + βz0 − βy)− lx2]y − ω2
0x.

(13)

The system (13) has a single steady point at the origin,
O(0, 0). This point is stable if z0 < zh, zh ≡ −(1 + αI)/β
and otherwise it is unstable. It can be shown that the
fixed point O(0, 0) loses the stability by a supercritical
Andronov-Hopf bifurcation. Then, on each plane z = z0,
for z0 > zh, the system (13) has a stable limit cycle. Let
us denote this cycle by C(z0). Increasing z0, from z0 = zh,
the size (amplitude) of the limit cycle C(z0) monotonically
increases. In the phase space G+ the cycle C(z0) forms
a conical surface with apex at (0, 0, zh). We denote this
surface by K(0). Note, that using the averaging procedure
[15,16] for γ = µγ̃ and l = µl̃, with µ� 1, one can show
that the surface K(0) approaches

x2 +
y2

ω2
0

=
4γ̃
l̃

[1 + (α− β)I + βz0] . (14)

Let us take now ε2 sufficiently small, 0 < ε2 � 1. Then,
from the theory of continuous dependence of integral man-
ifolds on a parameter [17,18] follows that an integral man-
ifold K(ε2) exists in the system (10). The manifold K(ε2)
exists for z > zh + z0, where the infinitesimally small pa-
rameter z0(ε2) satisfies the conditions z0 > 0, and limε2→0

z0(ε2) = 0. Then, K(ε2) → K(0) with ε2 → 0. The qual-
itative shape of the surface K(ε2) is shown in Figure 1a.
Note, that the surface K(ε2) is defined only in the regions
F+

0 and F+
1 of the phase space. Therefore, only those parts

of K(ε2) located below the plane Za and above the plane
Z1 are defined in the phase space G+ (Fig. 1). We denote
these parts by K1 and K0, respectively.

Let us show that there is a set of parameter values for
which the system (10) has a stable limit cycle in K0. The
cycle “embraces” the surface K0. Consider the plane

Z0 = {z − y + I = 0} ·
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Fig. 2. Poincaré return map describing motions on the man-
ifold K+

0 . The fixed point corresponds to the stable limit cy-
cle C0 and the quasiharmonic oscillations. Parameter values:
α = −5, β = 5, γ = 0.001, l = 2,m2 = 0.1. Curve “1”: I = 0.08,
curve “2”: I = 0.05, curve “3”: I = 0.01. In case “3” there is
no fixed point and trajectories transitively go up to the switch
plane Za.

It follows from (10) that ż = 0 on this plane, ż < 0 above
the plane, and ż > 0 below the plane. The planes Za
and Z0 intersect the surface K0 at some elliptic curves, la
and l0,

la = K0 ∩ Za and l0 = K0 ∩ Z0, (15)

respectively (Fig. 1). Let A be the point of the curve la
where the variable z at la takes its minimum. We call it
z = zA. Let B and D be the points of l0 where z at l0 take
minimal and maximal values. We call them z = zB and
z = zD, respectively (Fig. 1). Let us choose the parameters
of the system (10) satisfying the inequality zA > zD. Call
K+

0 the part of the surface K0 which is located between
the curves

lB = K0 ∩ {z = zB} lD = K0 ∩ {z = zD} ·

From the third equation in (10) follows that the trajec-
tories of the system (10), belonging to K0, intersect the
curves lB and lD inward to K+

0 . Then, the system (10)
does not have steady points in K+

0 . Therefore, in K+
0 the

Poincaré return map is

z → g(z), (16)

with z ∈ L = K+
0 ∩ {x = 0}. The map (16) has been nu-

merically obtained (Fig. 2). It has a single stable fixed
point which corresponds to a stable limit cycle C0 in
system (10) embracing K0. Hence, a stable limit cycle
C0 formed by slow motions exists in the phase space G
of system (5). The three solid curves correspond to dif-
ferent values of the control parameter I. Increasing I,

the fixed point moves up and hence the limit cycle climbs
up on the surface K+

0 . The third map curve, I = 0.01, does
not have a fixed point. In this case the trajectories reach
the switch plane Za and leave the surface K+

0 . The system
(5) does not have limit cycles on the integral manifold.
The attractors of the system in this case are studied in
the next subsection. Note, that the map curves are close
to the diagonal, i.e. g′(z) → 1, with the prime denoting
the corresponding z-derivative. Then, the approach to the
fixed point proceeds very slow. This is because ε2 → 0 and
the trajectories of the system (5) evolve slowly along the
variable z in the phase space G+.

Figure 3 illustrates the evolution of u(t) as quasihar-
monic oscillations of the model (5) (Fig. 3a) and the
projection of C0 on the plane (x, y) (Fig. 3b).

3.3 Relaxation-like limit cycles

Although for suitable parameter values the VdP alone is
capable of exhibiting either quasiharmonic or relaxation
limit cycles, we restrict consideration to the former only.
We would like to have relaxation-like pulses on top of these
oscillations [5,7–9]. Accordingly, in this subsection we con-
tinue the study of the dynamical properties of (5), which
is the chosen particular case of the composite (3) with
rather simple Γ and Ω feedback functions.

Let us decrease the control parameter I. In this case
the plane Z0 approaches the plane Za in the phase space
G+ (Fig. 1). Since the limit cycle C0 on K+

0 located be-
tween the curves lB and lD intersects Z0, then C0 is also
climbing up to K0 when I decreases. There is a critical
value, I = I0, when the cycle C0 touches the plane Za.
It breaks the cycle C0. Let us show that in this case an
attractor of type (ii) (Sect. A) appears in the phase space
G of system (5). Its trajectories have both fast and slow
features.

3.3.1 Poincaré map

Let s0(x0, y0, z0) be a point of the plane Za belonging to
an ε-neighborhood (0 < ε � 1) of the curve la (see (15)
and Fig. 1). Consider the behavior of the trajectory, S,
of system (3) crossing this point. Motions along S can be
divided into four components.

1. Moving fast the variable z makes a jump with negli-
gible changes of the other variables, x, y (Sect. A). Using
(12) we find that after the jump the phase point at S has
the coordinates

x ≈ x0, y ≈ y0, z ≈ z0 + (1 +m2)(1− a). (17)

We denote this point by s0. Then, s0 ∈ G1 = G+∩{z−y >
1}, i.e. the point s0 is located above the plane Z1 (Fig. 1).

2. Leaving s0 the trajectory S moves slowly in the
neighborhood of K1 (Fig. 1). Since ż < 0 for all points
of the region G1 after some time S comes to the plane Z1

and hence leaves the region G1 (Fig. 1). Let s1(x1, y1, z1)
be the intersection point of S and Z1.
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(a) (b)

Fig. 3. Quasiharmonic oscillations corresponding to the limit cycle C0 on the manifold K+
0 . Time realizations of variable u(t),

and corresponding phase trajectories in the plane (x, u) of the model (5). Parameter values: α = −5, β = 5, γ = 0.001, l =
2,m2 = 0.1, I = 0.05.

3. At the point s1 the trajectory S falls down along
the variable z with negligible changes of x, y according to
(12). Then, the coordinates of the phase point at S are

x ≈ x1, y ≈ y1, z ≈ z1 − (1 +m2)(1− a). (18)

We denote this point by sa. Then, sa ∈ Ga = G+∩{z−y <
a}, i.e. the point sa is located below the plane Za in the
phase space G+ of system (10). Note, that Z0 divides Ga

into two parts, G+
a = Ga ∩ {z − y + I < 0} and G−a =

Ga ∩ {z − y + I > 0}.
4. Leaving the point sa the trajectory S proceeds with

slow motions of (10) near the surface K0. Let us choose the
value of I such that zB > zA and sa ∈ G+

a (Fig. 1). Then,
past the point sa, the trajectory S climbs up because in
this region, G+

a , the inequality ż > 0 is satisfied. During
this process the trajectory S makes a number of oscilla-
tions around K0. The variable z increases value at S until
the trajectory intersects the plane Z0. At all points above
Z0 the variable z is slowly decreasing. Thus, S intersects
twice the plane Z0 during one oscillation. Then, for suit-
able parameter values the trajectory S on the “average”
in a single turn around K0 still goes up until it intersects
the switch plane Za at some point s̄(x̄, ȳ, z̄). Note, that if
a < −I < 1 the region G−a does not exist and the variable
z grows monotonically from the point sa to the point s̄.
Hence, there is a Poincaré return map

s→ s̄ = Π(s).

It is a two-dimensional map because the coordinates z and
y are linked by the equation defining the plane Za. How-
ever, for a particular choice of parameter values (for in-
stance, if l is large enough) there is rather strong compres-
sion to the surface K0. Then, if we choose the initial point
s on the line la, the point s̄ approaches the line la and the
Poincaré return map Π becomes quasi–one-dimensional.

3.4 Attractors of the map Π

Let us construct Poincaré return maps for the attractors of
the second type (ii) involving both fast and slow motions
of the system (5). For illustration we fix the parameters
to the particular values α = −5, β = 5, γ = 0.001, l =
2,m2 = 0.1. This set allows us to characterize motions
by using the one-dimensional map Π. We set the control
parameter I such that the plane Z0 stays above Za. This
ensures the inequality zA > zD, and hence the trajectory
surely leaves the surface K+

0 and has fast motions. We
vary the initial point s along the elliptic curve la, then the
return point s̄ tends to la and, hence the map Π is indeed
one-dimensional. Figure 4a illustrates the map Π in the
plane (x, y). The solid curve is mapped by the system (10)
with jumps (12) into the curve labeled by circles which is
rather close to la. To describe the behavior of the map we
follow the x–coordinate of s, i.e. the map Π is g: x→ x̄.

Figure 4b illustrates the map Π when it has a single
stable fixed point. This point defines stable relaxation-
like limit cycle behavior in the phase space G. The time
realization of u(t) and the phase portrait of the attractor
in the plane (u, x) are shown in Figure 5. Such an at-
tractor describes the threshold mode of the system when
it generates pulses over the smooth limit cycle oscillatory
rythm. In this case when the trajectory reaches the thresh-
old (Za), up and down jumps (spikes) of u occur. Subse-
quently, the trajectory returns back to the quasiharmonic
mode.

There are other relaxation-like attractors and thresh-
old oscillations when Π does not have a simple (period
one) fixed point (Fig. 6). For instance, the map may con-
sist of a few continuous parts and a more complex (mul-
tiple period) periodic cycle appears in the phase space G
of (5). Figures 7a, b illustrate the time realization u(t)
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(a) (b)

Fig. 4. Map Π describing a relaxation-like limit cycle. I = −0.02. (a) Map Π in the plane (x, y). The solid curve accounts for
the initial points s on the line la. The curve labeled with circles is the transformation of la with the flow (3). (b) The dependence
of the mapped point x̄ on the initial point x of map Π. There is one stable fixed point corresponding to the cycle.

(a) (b)

Fig. 5. Relaxation-like limit cycle. (a) Time realizations of variable u(t), and (b) corresponding phase trajectories in the plane
(x, u) of the model (5). I = −0.02.

and phase portrait of the cycle defined by the map. This
limit cycle is of period 4. Note, that here the spikes ap-
pear with different inter-spike intervals. These differences
in the inter-spike interval are one (or more) periods of
the quasiharmonic oscillations. Note that the spikes occur
only at maxima of the quasiharmonic oscillations. Each
continuous part of the map Π (Fig. 6b) corresponds to a
definite value of the inter-spike interval.

Note, that the one-dimensional map obtained for
multiple period limit cycles (Fig. 6b) gives a rather
rough approximation to the actual trajectory (Fig. 7a)
in the three-dimensional phase space. However, it allows
to estimate the shape of the actual map curve for correc-
tion of the map to match map trajectories and trajectories
of the original system (10). In particular, in the case of
Figure 6 where the map has three continuous parts
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(a) (b)

Fig. 6. Map Π describing relaxation-like limit cycle of multiple period. I = −0.027. (a) Transformation of la under map Π in
the plane (x, y). (b) The dependence of the mapped point x̄ on the initial point x of map Π. There is no fixed point of period
one. Each continuous part of the map corresponds to a definite time interval (inter-spike interval) between two consecutive
spikes.

(a) (b)

(c)

Fig. 7. (a) Time realizations of u(t) corresponding to the map of Figure 6. (b) Phase trajectories in the plane (x, u) of the
model (5). I = −0.027. (c) Qualitative shape of the corrected map to describe multiple period attractors.
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(a) (b)

Fig. 8. Spike-burst behavior exhibited by oscillator (3) for a suitable choice of the parameter values and coupling functions.
(a) Time realization u(t). (b) A view of the attractor in (x, u) representation.

it can be done as follows. The right continuous part cor-
responds to 5 periods while the middle one to 4 periods.
The limit cycle observed in (10) can be encoded by the
number of periods between the pulses. That shown in
Figure 7a is ...− 4− 4− 4− 5− 4− 4− 4− 5− ... To de-
scribe such motions by a map we need a slightly corrected
general shape of the map curve in Figure 6a. The result
is shown in Figure 7c. The arrows indicate the trajectory
corresponding to a four-period limit cycle attractor.

4 Chaotic oscillations

We expect that an appropriate choice of parameter val-
ues and feedback functions, Γ (x, y) and Ω(x, y), yields a
chaotic outcome of the system (3). As it is known chaotic
oscillations are not possible with just the VdP element.
On the other hand we would also like to have spike-burst
behavior. For such purpose the choice of Ω made in Sec-
tion 3 is not suitable. Thus, we choose Ω more complex
than taken in equation (5). For illustration we take

Γ (u, I) = 0.18(1− 5I − 10u), Ω(u, I) = (1− u)

and m1 = m3 = 1,m2 = 0.1, a = 0.01, l = 5, I = −0.06.
Figures 8a, b illustrate the time realization, u(t), and the
attractor of the system in the (x, u) representation. Here
we approximate the fast motions of u by instantaneous
jumps as done in Section 3, equations (6, 7), and analyze
the system (10) for ε2 = 0.01 within the regions F+

0 and
F+

1 defined by equations (8).
To describe the attractor we have numerically con-

structed a Poincaré return map. Let us consider the map
of the plane u = a (Poincaré section) on itself by the tra-
jectories of the attractor. It appears that the points are

mapped closely to some curve as shown in Figure 9a. A
linear fit gives

y = −0.21 + 0.024x.

It is taken approximately as a curve invariant under the
map action and hence to describe the attractor the map
may be one-dimensional. Iterating the curve points us-
ing (3) we obtain the one-dimensional map shown in
Figure 9b. The attractor appears as a cluster of points very
close to the map curve obtained. The map in Figure 9b
does not have fixed points and consists of two continuous
parts. The right one, approaching the bisector line from
below, describes the fast jumps between the regions F+

0

and F+
1 of the phase space (Fig. 8). The left hand part de-

scribes slow motions in the region F+
0 between the bursts

of jumps. As shown in [19] the map in Figure 9b is chaotic
and describes a chaotic attractor in the phase space of the
system (3).

Thus, the system (3) when coupling relaxational and
quasiharmonic oscillators displays a chaotic outcome in
the form of “spiking-bursting” oscillations in the physiol-
ogy jargon [5–9].

5 Conclusion

We have shown that a system composed of two nonlin-
early coupled drastically different elements, one exhibiting
smooth limit cycle oscillations and the other an excitable
element displays a rich variety of attractors. These may be
regular and chaotic. The phase space analysis of the sys-
tem has shown the possibility to describe the attractors
by one-dimensional Poincaré return maps.

The model studied (3), with a single excitation thresh-
old, may exhibit pulses or spikes on top of quasiharmonic
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(a) (b)

Fig. 9. (a) Intersection points of the trajectories of the attractor with the plane u = a shown in Poincare plane section (x, y).
The points approach the invariant curve. (b) 1D Poincaré map defined on the invariant curve. The dots indicate the trajectories
of the attractor.

(limit cycle) oscillations. The inter-pulse interval is con-
trolled by the values of the parameters of the system.
Thus, such an oscillator may be of potential interest for
driving feedback or feedforward loops or circuits in chem-
istry or biochemistry [1,2,4], in physiology [5–9] or in elec-
tronics [10] and in other engineering applications. Indeed,
the composite system (3) defines well a generator with
a single excitation threshold producing both a definite
smooth rhythm, controllable pulses, chaotic behavior, and
almost any combination, simple or complex, of pulses on
top of the oscillations. For a very recent neurobiological
application of the methodology here presented to account
for the dynamics of (Inferior Olive) neurons with two
excitability thresholds see reference [20].

Motivation for this research came from illuminating discus-
sions with Prof. H. Haken, Prof. R. Llinas, Prof. L.O. Chua
and Prof. A. Fernandez de Molina. This research has been sup-
ported by the BCH Foundation (Spain), by the Russian Foun-
dation for Basic Research under Grant 97-02-16550, by the
Program “Soros Post Graduate Students” under Grant a99-861
(Russia), by DGICYT (Spain) under Grant PB9-0599 and
by the European Union under Grant FRB FM RX-CT96-
10. V.I.N. benefited from a Sabbatical position at Instituto
Pluridisciplinar, Universidad Complutense de Madrid.

We also wish to show our appreciation to an anonymous
referee for comments that helped improving the presentation
of our results.

References

1. S. Watanabe, S.H. Strogats, H.S.J. van der Zant, T.P.
Orlando, Physica D 97, 429 (1995).

2. Y. Kuramoto, Chemical Oscillations, Waves and Turbu-
lence (Springer-Verlag, New York, 1984).

3. A. Goldbeter, Biochemical oscillations and Cellular

Rhythms (Cambridge Unit. Press, Cambridge, 1996).
4. A.T. Winfree, The Geometry of Biological Time (Springer-

Verlag, Berlin, 1980).
5. H. Haken, Principles of Brain Functioning (Springer-

Verlag, Berlin, 1996).
6. H.D.I. Abarbanel, M.I. Rabinovich, A. Selverston, M.V.

Bazhenov, R. Huerta, M.M. Sushchik, L.L. Rubchinskii,
Phys. Usp. 39, 337 (1996).

7. J.P. Welsh, R. Llinas, Progress Brain Res. 114, 449 (1997).
8. R. Llinas, Y. Yarom, J. Physiol. 376, 163 (1986).
9. L.S. Bernardo, R.E. Foster, Brain Res. Bull. 17, 173

(1986).
10. Chua’s circuit: a Paradigm for Chaos, edited by R.N.

Madan (World Scientific, Singapore, 1993).
11. V.S. Afraimovich, V.I. Nekorkin, G.V. Osipov, V.D.

Shalfeev, Stability, structures and chaos in nonlinear syn-
chronization networks (World Scientific, Singapore, 1995).

12. A.A. Andronov, A.A. Vitt, S.E. Khaikin, Theory of oscil-
lations (Pergamon, N.Y., 1966).

13. R. Fitz Hugh, Biophys. J. 1, 445 (1961).
14. E.F. Mishenko, N.Kh. Rozov, Diffential equations with

small parameters and relaxation oscillations (Plenum
Press, New York, 1980).

15. N.N. Bogoliubov, Y.A. Mitropolsky, Asymptotic methods
in the theory of nonlinear oscillations (Hindustan Publish-
ers, New Delhi, 1961).

16. J. Guckenheimer, R. Holmes, Nonlinear Oscillations,
Dynamical Systems, and Bifurcations of Vector Fields
(Springer-Verlag, N.Y., 1983).

17. J.K. Hale, Oscillations in Nonlinear Systems (Mc Graw-
Hill, N.Y., 1963).

18. Yu.A. Mitropolsky, O.B. Lykova, Integral Manifolds in
Nonlinear Mechanics (Nauka, Moscow, 1973) (in Russian).

19. V.I. Nekorkin, V.B. Kazantsev, L.O. Chua, Int. J. Bifur-
cation Chaos 6, 1295 (1996).

20. M.G. Velarde, V.I. Nekorkin, V.B. Kazantsev, V.I.
Makarenko, R.R. Llinas, Neural Comp. (submitted).


